68 research outputs found

    Convexities related to path properties on graphs; a unified approach

    Get PDF
    Path properties, such as 'geodesic', 'induced', 'all paths' define a convexity on a connected graph. The general notion of path property, introduced in this paper, gives rise to a comprehensive survey of results obtained by different authors for a variety of path properties, together with a number of new results. We pay special attention to convexities defined by path properties on graph products and the classical convexity invariants, such as the Caratheodory, Helly and Radon numbers in relation with graph invariants, such as clique numbers and other graph properties.

    Median computation in graphs using consensus strategies

    Get PDF
    Following the Majority Strategy in graphs, other consensus strategies, namely Plurality Strategy, Hill Climbing and Steepest Ascent Hill Climbing strategies on graphs are discussed as methods for the computation of median sets of profiles. A review ofalgorithms for median computation on median graphs is discussed and their time complexities are compared. Implementation of the consensus strategies on median computation in arbitrary graphs is discussed.majority strategy;consensus strategy;Hill climbing median computation

    The induced path function, monotonicity and betweenness

    Get PDF
    The induced path function J(u,v)J(u, v) of a graph consists of the set of all vertices lying on the induced paths between vertices uu and vv. This function is a special instance of a transit function. The function JJ satisfies betweenness if winJ(u,v)w \\in J(u, v) implies unotinJ(w,v)u \\notin J(w, v) and xinJ(u,v)x \\in J(u, v) implies J(u,xsubseteqJ(u,v)J(u, x \\subseteq J(u, v), and it is monotone if x,yinJ(u,v)x, y \\in J(u, v) implies J(x,y)subseteqJ(u,v)J(x, y) \\subseteq J(u, v). The induced path function of aconnected graph satisfying the betweenness and monotone axioms are characterized by transit axioms.betweenness;induced path;transit function;monotone;house domino;long cycle;p-graph

    Consensus Strategies for Signed Profiles on Graphs

    Get PDF
    The median problem is a classical problem in Location Theory: one searches for a location that minimizes the average distance to the sites of the clients. This is for desired facilities as a distribution center for a set of warehouses. More recently, for obnoxious facilities, the antimedian was studied. Here one maximizes the average distance to the clients. In this paper the mixed case is studied. Clients are represented by a profile, which is a sequence of vertices with repetitions allowed. In a signed profile each element is provided with a sign from {+,-}. Thus one can take into account whether the client prefers the facility (with a + sign) or rejects it (with a - sign). The graphs for which all median sets, or all antimedian sets, are connected are characterized. Various consensus strategies for signed profiles are studied, amongst which Majority, Plurality and Scarcity. Hypercubes are the only graphs on which Majority produces the median set for all signed profiles. Finally, the antimedian sets are found by the Scarcity Strategy on e.g. Hamming graphs, Johnson graphs and halfcubes.median;consensus function;median graph;majority rule;plurality strategy;Graph theory;Hamming graph;Johnson graph;halfcube;scarcity strategy;Discrete location and assignment;Distance in graphs

    Convexities related to path properties on graphs

    Get PDF
    AbstractA feasible family of paths in a connected graph G is a family that contains at least one path between any pair of vertices in G. Any feasible path family defines a convexity on G. Well-known instances are: the geodesics, the induced paths, and all paths. We propose a more general approach for such ‘path properties’. We survey a number of results from this perspective, and present a number of new results. We focus on the behaviour of such convexities on the Cartesian product of graphs and on the classical convexity invariants, such as the Carathéodory, Helly and Radon numbers in relation with graph invariants, such as the clique number and other graph properties

    Median computation in graphs using consensus strategies

    Get PDF
    Following the Majority Strategy in graphs, other consensus strategies, namely Plurality Strategy, Hill Climbing and Steepest Ascent Hill Climbing strategies on graphs are discussed as methods for the computation of median sets of profiles. A review of algorithms for median computation on median graphs is discussed and their time complexities are compared. Implementation of the consensus strategies on median computation in arbitrary graphs is discussed

    The induced path function, monotonicity and betweenness

    Get PDF
    The induced path function J(u,v)J(u, v) of a graph consists of the set of all vertices lying on the induced paths between vertices uu and vv. This function is a special instance of a transit function. The function JJ satisfies betweenness if winJ(u,v)w \\in J(u, v) implies unotinJ(w,v)u \\notin J(w, v) and xinJ(u,v)x \\in J(u, v) implies J(u,xsubseteqJ(u,v)J(u, x \\subseteq J(u, v), and it is monotone if x,yinJ(u,v)x, y \\in J(u, v) implies J(x,y)subseteqJ(u,v)J(x, y) \\subseteq J(u, v). The induced path function of a connected graph satisfying the betweenness and monotone axioms are characterized by transit axioms

    The plurality strategy on graphs

    Get PDF
    The Majority Strategy for finding medians of a set of clients on a graph can be relaxed in the following way: if we are at v, then we move to a neighbor w if there are at least as many clients closer to w than to v (thus ignoring the clients at equal distance from v and w). The graphs on which this Plurality Strategy always finds the set of all medians are precisely those for which the set of medians induces always a connected subgraph

    Axiomatic Characterization of the Median and Antimedian Functions on Cocktail-Party Graphs and Complete Graphs

    Get PDF
    __Abstract__ A median (antimedian) of a profile of vertices on a graph GG is a vertex that minimizes (maximizes) the remoteness value, that is, the sum of the distances to the elements in the profile. The median (or antimedian) function has as output the set of medians (antimedians) of a profile. It is one of the basic models for the location of a desirable (or obnoxious) facility in a network. The median function is well studied. For instance it has been characterized axiomatically by three simple axioms on median graphs. The median function behaves nicely on many classes of graphs. In contrast the antimedian function does not have a nice behavior on most classes. So a nice axiomatic characterization may not be expected. In this paper an axiomatic characterization is obtained for the median and antimedian functions on complete graphs minus a perfect matching (also known as cocktail-party graphs). In addition a characterization of the antimedian function on complete graphs is presented

    Consensus Strategies for Signed Profiles on Graphs

    Get PDF
    The median problem is a classical problem in Location Theory: one searches for a location that minimizes the average distance to the sites of the clients. This is for desired facilities as a distribution center for a set of warehouses. More recently, for obnoxious facilities, the antimedian was studied. Here one maximizes the average distance to the clients. In this paper the mixed case is studied. Clients are represented by a profile, which is a sequence of vertices with repetitions allowed. In a signed profile each element is provided with a sign from {+,-}. Thus one can take into account whether the client prefers the facility (with a + sign) or rejects it (with a - sign). The graphs for which all median sets, or all antimedian sets, are connected are characterized. Various consensus strategies for signed profiles are studied, amongst which Majority, Plurality and Scarcity. Hypercubes are the only graphs on which Majority produces the median set for all signed profiles. Finally, the antimedian sets are found by the Scarcity Strategy on e.g. Hamming graphs, Johnson graphs and halfcubes
    corecore